MCP
MCP 是一种开放式协议,它规范了应用程序向 LLM 提供上下文的方式。把 MCP 想象成人工智能应用的 USB-C 端口。就像 USB-C 提供了将设备连接到各种外设和配件的标准化方式一样,MCP 也提供了将人工智能模型连接到不同数据源和工具的标准化方式。
MCP 本质上是大模型和工具的一种交互方式,需要开发者遵守 MCP 接口来开发给 LLM 或者 Agent 的工具,这个我们叫做 MCP Server

过程应该是:
MCP Client(本地的IDE或者Claude Desktop) -> MCP 协议 -> MCP Server -> 完成任务MCP Server 去执行对应的功能,作为后端开发者需要了解如何为客户端提供对应的接口和处理响应
信息格式
参考官网的文档: Transports - Model Context Protocol
MCP 使用 JSON-RPC 2.0 作为传输格式。传输层负责将 MCP 协议信息转换成 JSON-RPC 格式进行传输,并将收到的 JSON-RPC 信息转换回 MCP 协议信息
Requests(Client 到 Server)
{
jsonrpc: "2.0",
id: number | string,
method: string,
params?: object
}Response(Server 到 Client)
{
jsonrpc: "2.0",
id: number | string,
result?: object,
error?: {
code: number,
message: string,
data?: unknown
}
}Notifications(通知,一种单向通信)
{
jsonrpc: "2.0",
method: string,
params?: object
}内置传输类型
标准输入/输出(stdio)
- 构建命令行工具
- 实施本地集成
- 需要简单的流程沟通
- 使用 shell 脚本
服务器发送事件(SSE)
- 只需要服务器到客户端的流式传输
- 使用受限网络
- 实施简单的更新
服务端代码构建
官网是构建了一个用于可用于 LLM 获取天气能力的 MCP:For Server Developers - Model Context Protocol
首先使用 uv 作为 Python 的包管理器,来配置环境:
# Create a new directory for our project
uv init weather
cd weather
# Create virtual environment and activate it
uv venv
source .venv/bin/activate
# Install dependencies
uv add "mcp[cli]" httpx
# Create our server file
touch weather.py国内的网大概率下不动,得配置一下镜像源,我这里用清华的:
uv add "mcp[cli]" httpx --index-url https://pypi.tuna.tsinghua.edu.cn/simple首先初始化一个实例和定义一些常量:
from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
# Initialize FastMCP server
mcp = FastMCP("weather")
# Constants
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"之后来请求这个 API,即 make_nws_request(),这用了一个异步的写法,等待 client.get() 的请求
下面的一个普通函数就是来解析结果的
async def make_nws_request(url: str) -> dict[str, Any] | None:
"""Make a request to the NWS API with proper error handling."""
headers = {
"User-Agent": USER_AGENT,
"Accept": "application/geo+json"
}
async with httpx.AsyncClient() as client:
try:
response = await client.get(url, headers=headers, timeout=30.0)
response.raise_for_status()
return response.json()
except Exception:
return None
def format_alert(feature: dict) -> str:
"""Format an alert feature into a readable string."""
props = feature["properties"]
return f"""
Event: {props.get('event', 'Unknown')}
Area: {props.get('areaDesc', 'Unknown')}
Severity: {props.get('severity', 'Unknown')}
Description: {props.get('description', 'No description available')}
Instructions: {props.get('instruction', 'No specific instructions provided')}
"""之后需要执行工具,这个就是 MCP Client 实际可调用的部分
@mcp.tool()
async def get_alerts(state: str) -> str:
"""Get weather alerts for a US state.
Args:
state: Two-letter US state code (e.g. CA, NY)
"""
url = f"{NWS_API_BASE}/alerts/active/area/{state}"
data = await make_nws_request(url)
if not data or "features" not in data:
return "Unable to fetch alerts or no alerts found."
if not data["features"]:
return "No active alerts for this state."
alerts = [format_alert(feature) for feature in data["features"]]
return "\n---\n".join(alerts)
@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:
"""Get weather forecast for a location.
Args:
latitude: Latitude of the location
longitude: Longitude of the location
"""
# First get the forecast grid endpoint
points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}"
points_data = await make_nws_request(points_url)
if not points_data:
return "Unable to fetch forecast data for this location."
# Get the forecast URL from the points response
forecast_url = points_data["properties"]["forecast"]
forecast_data = await make_nws_request(forecast_url)
if not forecast_data:
return "Unable to fetch detailed forecast."
# Format the periods into a readable forecast
periods = forecast_data["properties"]["periods"]
forecasts = []
for period in periods[:5]: # Only show next 5 periods
forecast = f"""
{period['name']}:
Temperature: {period['temperature']}°{period['temperatureUnit']}
Wind: {period['windSpeed']} {period['windDirection']}
Forecast: {period['detailedForecast']}
"""
forecasts.append(forecast)
return "\n---\n".join(forecasts)主要逻辑就是拼接字符串,MCP Client 主要是看修饰器 @mcp.tool() 和注释来知道工具是如何调用的,注释就是客户端的提示信息:
async def get_forecast(latitude: float, longitude: float) -> str:
"""Get weather forecast for a location.
Args:
latitude: Latitude of the location
longitude: Longitude of the location
"""MCP 客户端会将这段 docstring 作为模型的提示信息(prompt),告诉模型:
- 函数的用途(Get weather forecast for a location)
- 参数的含义(latitude 和 longitude 是经纬度)
之后传入对应的参数,进行运行,最后响应的结果是这样的:
{
"params": {
"latitude": 38.5816,
"longitude": -121.4944
},
"response": {
"content": [
{
"type": "text",
"text": "\nToday:\nTemperature: 92°F\nWind: 2 to 8 mph WNW\nForecast: Sunny, with a high near 92. West northwest wind 2 to 8 mph.\n\n---\n\nTonight:\nTemperature: 57°F\nWind: 5 to 8 mph SSW\nForecast: Clear, with a low around 57. South southwest wind 5 to 8 mph.\n\n---\n\nThursday:\nTemperature: 86°F\nWind: 5 to 13 mph S\nForecast: Sunny. High near 86, with temperatures falling to around 83 in the afternoon. South wind 5 to 13 mph, with gusts as high as 23 mph.\n\n---\n\nThursday Night:\nTemperature: 51°F\nWind: 6 to 13 mph SSW\nForecast: Clear, with a low around 51. South southwest wind 6 to 13 mph, with gusts as high as 23 mph.\n\n---\n\nFriday:\nTemperature: 81°F\nWind: 7 mph SSW\nForecast: Sunny, with a high near 81. South southwest wind around 7 mph.\n"
}
],
"isError": false
}
}然后 LLM 或者 Agent 对其进行总结,整理出其中的结果,并且以自然语言的方式输出给用户
实际上手
可以使用 JSON 文件在客户端对服务端进行定义:
{
"mcpServers": {
"weather": {
"command": "uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather",
"run",
"weather.py"
]
}
}
}也可以在 Cherry Studio 这样的客户端里面,进行设置,但大体都相同:

命令如果没有在 Cherry Studio 里面配置,可能需要使用 which uv 来查看一下,一些和密钥相关的最好使用环境变量传入进去,避免暴露
还根据这个改了一个用于天气查询的版本:
